High-Order Time Stepping for the Incompressible Navier-Stokes Equations

نویسندگان

  • Jean-Luc Guermond
  • Peter D. Minev
چکیده

This paper introduces a high-order time stepping technique for solving the incompressible Navier–Stokes equations which, unlike coupled techniques, does not require solving a saddle point problem at each time step and, unlike projection methods, does not produce splitting errors and spurious boundary layers. The technique is a generalization of the artificial compressibility method; it is unconditionally stable (for the unsteady Stokes equations), can reach any order in time, and uncouples the velocity and the pressure. The condition number of the linear systems associated with the fully discrete vector-valued problems to be solved at each time step scales like O(τh−2), where τ is the time step and h is the spatial grid size. No Poisson problem or other second-order elliptic problem has to be solved for the pressure corrections. Unlike projection methods, optimal convergence is observed numerically with Dirichlet and mixed Dirichlet/Neumann boundary conditions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Incompressible laminar flow computations by an upwind least-squares meshless method

In this paper, the laminar incompressible flow equations are solved by an upwind least-squares meshless method. Due to the difficulties in generating quality meshes, particularly in complex geometries, a meshless method is increasingly used as a new numerical tool. The meshless methods only use clouds of nodes to influence the domain of every node. Thus, they do not require the nodes to be conn...

متن کامل

Error Analysis of a Fractional Time-stepping Technique for Incompressible Flows with Variable

In this paper we analyze the convergence properties of a new fractional time-stepping technique for the solution of the variable density incompressible Navier–Stokes equations. The main feature of this method is that, contrary to other existing algorithms, the pressure is determined by just solving one Poisson equation per time step. First-order error estimates are proved, and stability of a fo...

متن کامل

An Enhanced Flux Treatment in Solving Incompressible Flow in a Forward-Facing Step

The aim of this paper is to give a detailed effect of several parameters such as step height, Reynolds number, contraction ratio, and temperature difference between the entrance and solid boundaries, of a forward-facing step. An accurate length of separation and reattachment zones are achieved. A finite-volume method (FVM) has been developed to study incompressible flow in a forward-facing step...

متن کامل

A p-multigrid spectral difference method for two-dimensional unsteady incompressible Navier–Stokes equations

This paper presents the development of a 2D high-order solver with spectral difference method for unsteady incompressible Navier–Stokes equations accelerated by a p-multigrid method. This solver is designed for unstructured quadrilateral elements. Time-marching methods cannot be applied directly to incompressible flows because the governing equations are not hyperbolic. An artificial compressib...

متن کامل

An Artificial Compressibility Method for the Spectral Difference Solution of Unsteady Incompressible Navier-Stokes Equations on Multiple Grids

This paper presents the development of a 2D high-order solver with unstructured spectral difference method for unsteady incompressible Navier-Stokes equations. Timemarching methods cannot be applied directly to incompressible flows because the governing equations are not hyperbolic. An artificial compressibility method (ACM) is employed in order to treat the inviscid fluxes using the traditiona...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Scientific Computing

دوره 37  شماره 

صفحات  -

تاریخ انتشار 2015